514 research outputs found

    Shape coexistence in neutron-deficient Kr isotopes: Constraints on the single-particle spectrum of self-consistent mean-field models from collective excitations

    Get PDF
    We discuss shape coexistence in the neutron-deficient Kr72-Kr78 isotopes in the framework of configuration mixing calculations of particle-number and angular-momentum projected axial mean-field states obtained from self-consistent calculations with the Skyrme interaction SLy6 and a density-dependent pairing interaction. While our calculation reproduces qualitatively and quantitatively many of the global features of these nuclei, such as coexistence of prolate and oblate shapes, their strong mixing at low angular momentum, and the deformation of collective bands, the ordering of our calculated low-lying levels is at variance with experiment. We analyse the role of the single-particle spectrum of the underlying mean-field for the spectrum of collective excitations.Comment: accepted for publication in Phys. Rev.

    Is there a Jordan geometry underlying quantum physics?

    Get PDF
    There have been several propositions for a geometric and essentially non-linear formulation of quantum mechanics. From a purely mathematical point of view, the point of view of Jordan algebra theory might give new strength to such approaches: there is a ``Jordan geometry'' belonging to the Jordan part of the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie geometry and the Jordan geometry are well-adapted to describe certain features of quantum theory. We concentrate here on the mathematical description of the Jordan geometry and raise some questions concerning possible relations with foundational issues of quantum theory.Comment: 30 page

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Base manifolds for fibrations of projective irreducible symplectic manifolds

    Get PDF
    Given a projective irreducible symplectic manifold MM of dimension 2n2n, a projective manifold XX and a surjective holomorphic map f:MXf:M \to X with connected fibers of positive dimension, we prove that XX is biholomorphic to the projective space of dimension nn. The proof is obtained by exploiting two geometric structures at general points of XX: the affine structure arising from the action variables of the Lagrangian fibration ff and the structure defined by the variety of minimal rational tangents on the Fano manifold XX

    Binary Nonlinearization of Lax pairs of Kaup-Newell Soliton Hierarchy

    Full text link
    Kaup-Newell soliton hierarchy is derived from a kind of Lax pairs different from the original ones. Binary nonlinearization procedure corresponding to the Bargmann symmetry constraint is carried out for those Lax pairs. The proposed Lax pairs together with adjoint Lax pairs are constrained as a hierarchy of commutative, finite dimensional integrable Hamiltonian systems in the Liouville sense, which also provides us with new examples of finite dimensional integrable Hamiltonian systems. A sort of involutive solutions to the Kaup-Newell hierarchy are exhibited through the obtained finite dimensional integrable systems and the general involutive system engendered by binary nonlinearization is reduced to a specific involutive system generated by mono-nonlinearization.Comment: 15 pages, plain+ams tex, to be published in Il Nuovo Cimento

    Helical vs. fundamental solitons in optical fibers

    Full text link
    We consider solitons in a nonlinear optical fiber with a single polarization in a region of parameters where it carries exactly two distinct modes, the fundamental one and the first-order helical mode. From the viewpoint of applications to dense-WDM communication systems, this opens way to double the number of channels carried by the fiber. Aside from that, experimental observation of helical (spinning) solitons and collisions between them and with fundamental solitons are issues of fundamental interest. We introduce a system of coupled nonlinear Schroedinger equations for fundamental and helical modes, which have nonstandard values of the cross-phase-modulation coupling constants, and investigate, analytically and numerically, results of "complete" and "incomplete" collisions between solitons carried by the two modes. We conclude that the collision-induced crosstalk is partly attenuated in comparison with the usual WDM system, which sometimes may be crucially important, preventing merger of the colliding solitons into a breather. The interaction between the two modes is found to be additionally strongly suppressed in comparison with that in the WDM system in the case when a dispersion-shifted or dispersion-compensated fiber is used.Comment: a plain latex file with the text and two ps files with figures. Physica Scripta, in pres

    π\pi-kinks in strongly ac driven sine-Gordon systems

    Full text link
    We demonstrate that π\pi-kinks exist in non-parametrically ac driven sine-Gordon systems if the ac drive is sufficiently fast. It is found that, at a critical value of the drive amplitude, there are two stable and two unstable equilibria in the sine-Gordon phase. The pairwise symmetry of these equilibria implies the existence of a one-parameter family of π\pi-kink solutions in the reduced system. In the dissipative case of the ac driven sine-Gordon systems, corresponding to Josephson junctions, the velocity is selected by the balance between the perturbations. The results are derived from a perturbation analysis and verified by direct numerical simulations.Comment: 4 pages, 2 figures, revte

    Numerical evidence for `multi-scalar stars'

    Get PDF
    We present a class of general relativistic soliton-like solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ``phase-shifted boson stars'' (parameterized by central density rho_0 and phase delta), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W.M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar soliton-like solutions are perhaps more generic than has been previously thought.Comment: Revtex. 4 pages with 4 figures. Submitted to Phys. Rev.
    corecore